

The Anatomy of an Imagine Math Lesson



Learn more at imaginelearning.com

## T.O.C.

# **Table of Contents**

| At a Glance: Imagine Math Activities4 |
|---------------------------------------|
| Pre-Quiz5                             |
| Warm Up6                              |
| Guided Learning7                      |
| Problem Solving Process               |
| Practice                              |
| Post-Quiz11                           |



## **Overview**

Imagine Math lessons are designed to be instructional learning experiences that engage students in meaningful exploration of understanding mathematics. In an Imagine Math lesson, students will:

- Engage in thinking and reasoning about mathematics
- Investigate mathematical concepts and practices
- Explore mathematical ideas through a problem solving approach
- Work through problems using a variety of interactions, such as drag-and-drop to create a table and select from a drop-down list to complete a statement
- Solve problems using multiple representations of mathematical relationships
- Learn to look at a problem in different ways and reason about its solutions

#### Students receive instructional support throughout the lesson in 3 main ways:

- 1. Feedback that is designed to address misconceptions and redirect thinking in response to student work
- 2. Math Help that is designed to provide direct instruction on the math concepts behind a particular problem, available upon student request
- 3. Live Help that allows students to work directly with a certified math teacher on their math problem, also available upon student request



# **At a Glance: Imagine Math Activities**



Imagine Math lessons are designed to be instructional learning experiences that engage students in meaningful exploration of understanding mathematics. In an Imagine Math lesson, students will:

| Activity                | Overview                                                                                                                                                                                                                                                |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Quiz                | Students have the opportunity to demonstrate their understanding of the content within the lesson.                                                                                                                                                      |
| Warm Up                 | Students practice procedures and recall facts that may be helpful in the lesson.                                                                                                                                                                        |
| Guided Learning         | Students engage in meaningful instructional tasks designed<br>to facilitate understanding of the learning objectives of the<br>lesson. Students choose their level of instruction through<br>corrective feedback, math helps, and live teacher support. |
| Problem Solving Process | Students work through and begin to internalize a problem solving process that can be applied to complex problems.                                                                                                                                       |
| Practice                | Students review, extend, and synthesize the ideas from the Guided Learning, continuing to receive corrective feedback.                                                                                                                                  |
| Post-Quiz               | Students demonstrate their understanding of the content within the lesson.                                                                                                                                                                              |

### Pre-Quiz

## **Pre-Quiz**



### Goals

- Assess student understanding of the content within the lesson
- Provide a data point to measure growth

#### **Instructional Features**

• Students are able to see which parts of the problem they answered correctly or incorrectly

### **Characteristics**

- Nearly all lessons include a Pre-Quiz.
- Students who demonstrate mastery of the content (at least 80%) may be allowed to skip the rest of the activities in that lesson and move on to the next lesson in their pathway.
- Students can receive partial credit for problems on the quiz.
- Pre-Quizzes generally consist of 7 problems.



### Warm Up

# Warm Up



Imagine Math games prime students for the lesson by allowing them to practice procedures and recall facts that may be helpful in the lesson. Imagine Math games build fluency and skills so students can better see relationships in new content. Imagine Math games are designed so that success in the game is based on success with the math—not just success in mastering the game play.

### Goals

- Practice procedures, recall facts, and build fluency
- Prime students for their lesson
- Engage students—this is a fun way to hook the student into the lesson
- Practice skills—students are able to complete more problems in a game setting and therefore have increased opportunities for practice

### **Instructional Features**

- Imagine Math games provide dynamic, in-game feedback for students
- Opportunities for revision that allow students to learn and deepen math skills and understanding

### **Characteristics**

- Most lessons include a Warm Up
- Warm Up games are approximately 3 minutes



### Guided Learning

# **Guided Learning**



This is the activity in which students begin to engage in meaningful instruction that facilities their learning of the lesson's skills, concepts, and goals. The problems in Guided Learning are designed to address student misconceptions head-on in order to provide opportunities for learning. Students can make the most of the learning opportunities in the Guided Learning activity by carefully reading feedback and helps and taking notes in their Imagine Math journal.

#### Goals

- Provide instruction on a standard, concept, and/or skill
- Allow students to learn by doing

#### **Instructional Features**

- Feedback allows students to review why their work was correct or incorrect
- Selecting Math Help allows students access to instruction on the item and/or concept at any time
- After attempting the problem, students can connect to an Imagine Math Teacher for individualized instruction
- Students are able to make multiple attempts
- Students benefit from using their journal to take notes during this activity

### **Characteristics**

- Nearly all lessons include this instructional component.
- The Guided Learning activity typically consists of 2-4 problems.
- This activity provides learning opportunities for concepts and skills that will be practiced and assessed later in the lesson

#### LEVEL 1

Automated, customized corrective feedback



### LEVEL 2

Type or talk with expert online math teachers



#### LEVEL 3

Two-way virtual whiteboard environment



# **Problem Solving Process**

Imagine Math's original learning activity is the Problem Solving Process. Also referred to as PSP, this activity supports students in working through a process for solving real-world problems. As with Guided Learning, students will receive feedback and also have access to Math Help and the Imagine Math Teachers.

#### Goals

- Situate the mathematics of the lesson in meaningful and appropriately complex problems
- Pose real world application problems
- Guide students through a problem solving process that can be used in other situations and that includes reflection on their thinking
- Help students move between multiple representations of a problem situation including context, diagram, word equation, and numeric representation

|                                                                                                                                                     | 527<br>                                                           |                                         |                                                |                                              | Colored and                                        |                                                                    | Question                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| PROBLEM SOLVING STEPS:                                                                                                                              | 🔗 ANALYZE                                                         | 🔗 PLAN                                  | 3 SOLVE                                        | sur 💽                                        | TIFY                                               | 5 EV.                                                              | ALUATE                                                                                               |
| Your :<br>comp<br>of 5 tr                                                                                                                           | school wants to have 5 com<br>uters and 924 students. Ho<br>o 12? | puters for every 12<br>w many more comp | students. There are                            | now 125<br>have a ratio                      | •                                                  |                                                                    |                                                                                                      |
| computers now<br>in school<br>additional<br>computers                                                                                               | udents                                                            | The                                     | final ratio of comput<br>puters divided by the | ers to studer<br>total numb                  | nts is the<br>er of stud                           | total num<br>lents.                                                | ber of                                                                                               |
|                                                                                                                                                     |                                                                   |                                         |                                                |                                              |                                                    |                                                                    |                                                                                                      |
| Use the buttons below to build                                                                                                                      | an equation with words and                                        | d symbols.                              |                                                |                                              |                                                    |                                                                    | СНЕСК                                                                                                |
| Use the buttons below to build                                                                                                                      | an equation with words and                                        | d symbols.                              |                                                | +                                            | -                                                  | ×                                                                  | CHECK                                                                                                |
| Use the buttons below to build<br>final ratio of computers to stu<br>number of students                                                             | an equation with words and                                        | d symbols.                              |                                                | +                                            | -<br>x <sup>2</sup>                                | ×<br>x <sup>3</sup>                                                | снеск<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,      |
| Use the buttons below to build<br>final ratio of computers to stu<br>number of students<br>number of computers now                                  | an equation with words and                                        | d symbols.                              |                                                | +<br>(-)<br><u><del>a</del></u>              | $\begin{bmatrix} -\\ x^2\\ \sqrt{x} \end{bmatrix}$ | ×<br>x <sup>3</sup><br><sup>3</sup> √x                             | Снеск<br>•<br>•<br>У <sup>x</sup><br>∛у                                                              |
| Use the buttons below to build<br>final ratio of computers to stu<br>number of students<br>number of computers now<br>number of additional computer | an equation with words and                                        | d symbols.                              |                                                | +<br>(-)<br><sup>3</sup> / <sub>b</sub><br>π | $-$ $x^{2}$ $\sqrt{x}$ (                           | $\begin{array}{c} \times \\ x^{3} \\ \sqrt[3]{x} \\ \end{pmatrix}$ | снеск<br>+<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Use the buttons below to build<br>final ratio of computers to stu<br>number of students<br>number of computers now<br>number of additional computer | an equation with words and                                        | d symbols.                              |                                                | +<br>(-)<br><u>λ</u><br>π                    | -<br>x <sup>2</sup><br>√x<br>(<br>ETE              | ×<br>x <sup>3</sup><br>∛x<br>)<br>CLE                              | CHECK<br>+<br><i>y</i> <sup>x</sup><br>∛ <i>y</i><br>=<br>                                           |

#### **Instructional Features**

- Feedback allows students to review why their work was correct or incorrect.
- Students are supported in solving problems via a 5-step process.
- While working in the Solve Step, students can select Math Help. Selecting Math Help allows students access to instruction on the item and/or concept at any time. After an attempt in the Solve Step, students can connect to an Imagine Math Teacher for individualized instruction.

#### **Characteristics - The Five Steps**

The 5 steps in Imagine Math's problem-solving model are grounded in research in cognitive thinking processes and intervention methods for struggling students. The steps guide students all the way from breaking down a problem to reflecting on the process itself:

#### 1. Analyze the problem situation

- a. Identify what the problem is asking.
- b. Identify the quantities in the problem.
- c. Select a diagram that models the problem situation.

#### 2. Plan to solve the problem

- a. Think about why writing an equation is a useful strategy for solving the problem.
- b. Describe how the quantities in the problem are related.

#### 3. Solve the problem

- a. Build a word equation to represent the problem situation.
- b. Solve the equation.
- c. Interpret the solution.
- 4. Justify your solution-explain why the solution makes sense
- 5. Evaluate the problem solving process—think about how writing an equation helped you solve the problem.

### Practice

## Practice

1 2 3 4 5 6 Pre-Quiz Warm Up Guided Practice Post-Quiz Finish

At this point in the lesson, students have explored and had the opportunity to learn the math concepts of the lesson with the intensive support of feedback, helps, and live Imagine Math teachers. Now, students will practice what they've learned independently.

#### Goals

- Provide students the opportunity to practice what they have learned in Guided Learning
- Allow students to extend what they have learned while still having access to corrective feedback

#### **Instructional Features**

- Feedback allows students to review why their work was correct or incorrect.
- Students are encouraged to refer back to and add to their journal.

### **Characteristics**

- All lessons include this instructional component.
- The Practice activity typically consists of 5-10 problems.
- This activity provides practice to prepare students for the Post-Quiz.

| identifying and                | Generating Equivatent Expr              |                                                  |                                                                                                     |  |  |  |  |
|--------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
|                                | Drag each expression to sho<br>neither. | ow whether it is equivalent to 12( <i>m</i> + 4  | a), 12 <i>m</i> + 4, or                                                                             |  |  |  |  |
|                                |                                         |                                                  |                                                                                                     |  |  |  |  |
|                                |                                         |                                                  | PREVIOUS NEXT CLOSE                                                                                 |  |  |  |  |
| This expression do             | es not belong in this category          | у.                                               |                                                                                                     |  |  |  |  |
| This exp<br>common             | pression has terms with a<br>n factor.  | Identifyii<br>you find                           | ng a common factor can help<br>an equivalent expression.                                            |  |  |  |  |
|                                |                                         |                                                  | These terms share a common factor.                                                                  |  |  |  |  |
|                                | 12 <i>m</i> + 16                        | These te                                         | erms share a common factor.                                                                         |  |  |  |  |
|                                | 12 <i>m</i> + 16                        | These te                                         | erms share a common factor.<br>12m + 4                                                              |  |  |  |  |
|                                | 12 <i>m</i> + 16                        | These te                                         | erms share a common factor.<br>12m + 4                                                              |  |  |  |  |
| 12( <i>m</i> -                 | 12 <i>m</i> + 16                        | These te                                         | Neither                                                                                             |  |  |  |  |
| <b>12(m</b> -<br>12m +         | 12 <i>m</i> + 16                        | These te<br>12m + 4<br>12m + 6                   | Neither<br>2(6m + 2)                                                                                |  |  |  |  |
| <b>12(m</b> -<br>12 <i>m</i> + | <b>12m + 16</b>                         | 12m + 4         12m + 6         X                | The share a common factor.<br>12m + 4<br>Neither<br>2(6m + 2)<br>X                                  |  |  |  |  |
| 12(m<br>12m +                  | 12 <i>m</i> + 16                        | 12m + 4<br>12m + 6<br>×                          | Primes share a common factor.<br>12m + 4<br>Neither<br>2(6m + 2)<br>$\times$<br>(12 + m) + (12 + 4) |  |  |  |  |
| 12(m<br>12m +<br>(12 • m) +    | <b>12<i>m</i> + 16</b>                  | These te<br>12m + 4<br>12m + 6<br>×<br>4(3m + 1) | The share a common factor.<br>12m + 4<br>Neither<br>2(6m + 2)<br>$\times$<br>(12 + m) + (12 + 4)    |  |  |  |  |

### Post-Quiz

## **Post-Quiz**



### Goals

- Assess student understanding of the content
- Provide a data point to measure growth

#### **Instructional Features**

• Students are able to see which parts of the problem were answered correctly or incorrectly

### **Characteristics**

- All lessons include a Post-Quiz.
- Students who demonstrate mastery of the content (at least 70%) will pass the lesson.
- Students can receive partial credit for problems on the quiz.
- Post-Quizzes generally consist of 7 problems.
- The results of the Post-Quiz may determine the next lesson on the student's pathway.



This student will receive credit for the 5 expressions that were correctly categorized.

The Anatomy of an Imagine Math Lesson







Learn more at imaginelearning.com